Learning Mahalanobis Distance Metric: Considering Instance Disturbance Helps
نویسندگان
چکیده
Mahalanobis distance metric takes feature weights and correlation into account in the distance computation, which can improve the performance of many similarity/dissimilarity based methods, such as kNN. Most existing distance metric learning methods obtain metric based on the raw features and side information but neglect the reliability of them. Noises or disturbances on instances will make changes on their relationships, so as to affect the learned metric. In this paper, we claim that considering disturbance of instances may help the metric learning approach get a robust metric, and propose the Distance metRIc learning Facilitated by disTurbances (DRIFT) approach. In DRIFT, the noise or the disturbance of each instance is learned. Therefore, the distance between each pair of (noisy) instances can be better estimated, which facilitates side information utilization and metric learning. Experiments on prediction and visualization clearly indicate the effectiveness of DRIFT.
منابع مشابه
A Scalable Algorithm for Learning a Mahalanobis Distance Metric
In this work, we propose a scalable and fast algorithm to learn a Mahalanobis distance metric. The key issue in this task is to learn an optimal Mahalanobis matrix in this distance metric. It has been shown in the statistical learning theory [?] that increasing the margin between different classes helps to reduce the generalization error. Hence, our algorithm formulates the Mahalanobis matrix a...
متن کاملObject Tracking Using On-line Distance Metric Learning
In order to improve the real-time quality and precision of object tracking, an algrithm using distance metric learning is studied. First, instances are selected around the objects, and features vectors are extracted by using the compress sensing theory. Second, distance metric is trained according to the random projection theory. Finally, the Mahalanobis distance of target object and possible i...
متن کاملAn investigation on scaling parameter and distance metrics in semi-supervised Fuzzy c-means
The scaling parameter α helps maintain a balance between supervised and unsupervised learning in semi-supervised Fuzzy c-Means (ssFCM). In this study, we investigated the effects of different α values, 0.1, 0.5, 1 and 10 in Pedrycz and Waletsky’s ssFCM with various amounts of labelled data, 10%, 20%, 30%, 40%, 50% and 60% and three distance metrics, Euclidean, Mahalanobis and kernel-based on th...
متن کاملInformation-theoretic Semi-supervised Metric Learning via Entropy Regularization
We propose a general information-theoretic approach to semi-supervised metric learning called SERAPH (SEmi-supervised metRic leArning Paradigm with Hypersparsity) that does not rely on the manifold assumption. Given the probability parameterized by a Mahalanobis distance, we maximize its entropy on labeled data and minimize its entropy on unlabeled data following entropy regularization. For met...
متن کاملLearning Distance Metrics for Multi-Label Classification
Distance metric learning is a well studied problem in the field of machine learning, where it is typically used to improve the accuracy of instance based learning techniques. In this paper we propose a distance metric learning algorithm that is specialised for multi-label classification tasks, rather than the multiclass setting considered by most work in this area. The method trains an embedder...
متن کامل